38.32. Solve: Photons emitted from the n = 4 state start in energy level n = 4 and undergo a quantum jump to a lower energy level with m < 4. The possibilities are $4 \to 1$, $4 \to 2$, and $4 \to 3$. According to Equation 38.36, the transition $4 \to m$ emits a photon of wavelength.

$$\lambda = \frac{\lambda_0}{\left(\frac{1}{m^2} - \frac{1}{n^2}\right)} = \frac{91.18 \text{ nm}}{\left(\frac{1}{m^2} - \frac{1}{16}\right)}$$

These values are given in the table below.

Transition	Wavelength
$4 \rightarrow 1$	97.3 nm
$4 \rightarrow 2$	486 nm
$4 \rightarrow 3$	1876 nm